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Machine Translation

@ The core idea of statistical machine translation (SMT) is to learn a
probabilistic models from data.

argmax P(y|x) = arg max P(x|y)P(y)
y y

We want to find best target language sentence y, given source language

sentence x.

o Neural machine translation (NMT) is a way to do machine translation with

a single end-to-end neural network.
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Advantages of NMT

Compared to SMT, NMT has many advantages:
@ Better performance

o More fluent
o Better use of context

o Better use of phrase similarities

@ A single neural network to be optimized end-to-end
o No subcomponents to be individually optimized

@ Requires much less human engineering effort

o No feature engineering

e Same method for all language pairs
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BLEU (Bilingual Evaluation Understudy) Score

BLEU compares the machine-written translation to human-written translation,
and computes a similarity score based on n-gram precision and a penalty for

too-short system translations.
N
n=1
min(0 1_m)
where B = e 5 fength of MT W, = l/N and

B #(matched n-grams)
Pn= #(n-grams in candidate translation)’
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BLEU (Bilingual Evaluation Understudy) Score
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with w, = 1/N =1/4.
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Sequence-to-Sequence Learning

@ Sequence-to-sequence models [1], [2] are deep learning models that have
achieved a lot of success in downstream tasks.

o Machine Translation
e Text Summarization
e Image Captioning
@ A sequence-to-sequence model is a model that takes a sequence of items and

outputs another sequence of items.
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Sequence-to-Sequence Learning

SEQUENCE TO SEQUENCE MODEL

SEQUENCE TO SEQUENCE MODEL

Figure 1: A trained sequence-to-sequence takes a sequence of items (words, letters,

features of an images etc.) and outputs another sequence of items. [3]
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RNN Encoder-Decoder

@ A Seq2Seq model consists of an encoder and a decoder.

@ The encoder processes each item in the input sequence, and compiles the

information into a context vector.

@ After processing the entire input sequence, the encoder sends the context over

to the decoder, which begins producing the output sequence item by item.

SEQUENCE TO SEQUENCE MODEL

E DECODER
—_—

Figure 2: An encoder and a decoder of a Seq2Seq model.
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RNN Encoder-Decoder

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Encoding Stage Decoding Stage

Encoder Encoder Decoder

RNN RNN RNN

Figure 3: An unrolled view of a RNN encoder-decoder.
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Bottleneck Problem

@ What if an input sentence becomes too long?

@ The context vector turned out to be a bottleneck for these types of models,

which makes it challenging for the models to deal with long sentences.

L7} O] e e 222 227

H- HHHHHHH

When | awoke and found that all was
dark and still, | suppose | thought it
was night, and | must have wondered
why day was so long coming ...

Figure 4: It is hard to encode a long input sentence into a fixed-length context vector.
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Bottleneck Problem
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Figure 5: The BLEU scores achieved by several methods. The neural machince

translation system underperforms with long sentences. [4]
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Seq2Seq with Attention

@ Attention [5], [6] highly improved the quality of machine translation systems.
@ Rather than using fixed context vector, we can use encoder’s each state with

current state to generate dynamic context vector.

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage

Decoding Stage

Attention Attention

Attention Attention
Decoder Decoder

Decoder Decoder

RNN RNN RNN RNN

Figure 6: Attention model encodes information into sequence of vectors not in a single

context vector, and chooses a subset of these vectors adativley while decoding the

translation.
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Seq2Seq with Attention

Encoder Decoder hidden

hidden state at time step 4
states
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decoder time step #4
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5. Sum up the weighted Context vector for
vectors decoder time step #4
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Seq2Seq with Attention

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION
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Seq2Seq with Attention

I accord sur la zone économique européenne a été signé en aolt 1992 . <end>
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Figure 7: Attention allows the model to focus on the relevant parts of the input sequence
as needed. [7]
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Transformer

@ The Transformer was proposed in the paper Attention is All You Need. [8]

@ It uses attention to boost the speed with which these models can be trained

and easy to parallerize.

@ Inside the Transformer, there are an encoding component, a decoding

compoenent and connections between them.

@ Recent state-of-the-arts models (e.g., GPT-3, BERT) are based on

Transformer architecture.
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Transformer
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Figure 8: The Transformer - model architecture.

jun Kim (Seoul Natiol i ity) Natural Language Processing with Deep Learnin



Positional Encoding

@ The Transformer contains no recurrence and no convolution.

@ In order for the model to make use of the order of the sequence, we must
inject some information about the relative or absolute position of the tokens

in the sequence.

@ We add positional encodings to the input embeddings at the bottoms of

the encoder and decoder stacks.

PE(pos,2i) = Sin(pos/]_OOOOz"/dmode/)
PE(pos,2i+1) = COS(pOS/lOOOOZi/dmodeI)
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Positional Encoding

Two properties that a good positional encoding scheme should have
@ The norm of encoding vector is the same for all positions.

@ The further the two positions, the larger the distance.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
XI 0000 | 1275 | 2067 | 2823 | 3361 | 3508 | 3392 | 3440 | 3417 | 3266
X2 1275 | 0000 | 1004 | 2195 | 335 | 3511 | 3452 | 3442 | 3387 | 3308
X3 2067 | 1104 | 0000 | 1296 | 2468 | 3067 | 3256 | 3464 | 3498 | 3371
X4 | 2823 | 2195 | 1296 | 0000 | 1275 | 2110 | 2746 | 3399 | 3624 | 3399
X5 3361 | 3435 | 2468 | 1275 | 0000 | 1057 | 2176 | 3242 | 3659 | 3434
x6 | 3508 | 3511 | 3067 | 2410 | 1057 | 0000 | 1333 | 2601 | 3469 | 3.118
X7 | 3392 | 3452 | 3256 | 2746 | 2176 | 1333 | 0000 | 1338 | 2063 | 2429
X8 | 3440 | 3442 | 3464 | 3399 | 3242 | 2601 | 1338 | 0000 | 0912 | 1891
X9 | 3417 | 3387 | 3498 | 3624 | 3659 | 3.69 | 2063 | 0912 | 0000 | 1277

X10 | 3266 | 3308 | 3371 | 3399 | 3434 | 3.18 | 2429 | 1891 | 1277 | 0000

Figure 9: A simple example of the positional encoding with n = 10, dmoder = 10.
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Transformer - Encoder
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Figure 10: The encoder structure of Transformer. The encoding component is a stack of

encoders. [9]

jun Kim (Seoul National University)

Natural Language Processing with Deep Learning



Self-Attention

@ An attention function can be described as mapping a query and a set of

key-value pairs to an output.

@ The output is computed as a weighted sum of the values, where the weight
assigned to each value is computed by the query with the corresponding key.
@ Self attention allows it to look at other positions in the input sequence for

clues that can help lead to a better encoding.

@ Self attention is the method the Transformer uses to bake the understanding

of other relevant words into the one which currently processed.
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Self-Attention

“The animal didn't cross the street because it was too tired.”

@ Query is a representation of the current word used to score against all the

other words.
o Keys are like labels for all the words in the segment.

@ Values are actual word representations, once we have scored how relevant

each word is, these are the values we add up to represent the current word.

Q T
Attention(Q, K, V') = softmax () %
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Self-Attention
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Self-Attention
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Self-Attention

T
Attention(Q, K, V) = softmax ( ) %

Q T

softmax HEHX@ :
e =) B

Figure 11: The self-attention calculation in matrix form.
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Self-Attention
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Transformer - Decoder
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Figure 12: The decoder structure of Transformer. The decoding component is also a

stack of decoders.
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Attention in the Transformer

The Transformer uses multi-head attention in three different ways:
o Self-Attention
o The encoder contains self-attention layesrs. Values and queries come from the
same place, the output of the previous layer in the encoder.
@ Masked Self-Attention
o Self-attention layers in the decoder allow each position in the decoder to
attend to all positions in the decoder up to annd including that position.
@ Encoder-Decoder Attention
e The queries come from the previous decoder layer, and the memory keys and
values come from the output of the encoder. This allows every position in the

decoder to attend over all positions in the input sentence.
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Transformer - Decoder
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