
Natural Language Processing with Deep Learning

Language Models, RNN and LSTM

Myungjun Kim

Seoul National University

January 28, 2022

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 1 / 36

Contents

1 Language Modelings

2 Recurrent Neural Networks (RNN)

3 Long Short-Term Memory (LSTM)

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 2 / 36

Language Modelings

Language Modeling is the task of predicting what word comes next.

the students opened their

Given a sequence of words x (1), x (2), . . . , x (t), compute the probability distribution

of the next word x (t+1):

P(x (t+1)|x (1), . . . , x (t))

where x (t+1) can be any word in the vocabulary V = {w1, . . . ,w|V |}. A system

that does this is called a Language Model.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 3 / 36

Language Modelings

We can think of a language model as a system that assigns probability to a

piece of text.

If we have some text x (1), . . . , x (t), then the probability of this text is

P(x (1), . . . , x (t)) = P(x (1))× P(x (2)|x (1))× · · · × P(x (t)|x (1), . . . , x (t−1))

=
T∏
t=1

P(x (t)|x (1), . . . , x (t−1)).

The standard evaluation metric for LM is perplexity.

perplexity =
T∏
t=1

(
1

PLM(x (t+1)|x (1), . . . , x (t))

)1/T

= exp (J(θ))

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 4 / 36

Why should we care about LM?

Language modeling is a benchmark task that helps us to measure our

progress on understanding language.

Language modeling is a subcomponent of many NLP tasks, especially those

involving generating text or estimating the probability of text, e.g.,

Predictive typing

Speech recognition

Handwriting recognition

Spelling/grammar correction

Machine translation

Summarization

Dialogue

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 5 / 36

n-gram Language Models

n-gram Language Model is a pre-Deep learning language model.

A n-gram is a chunk of n consecutive words.

unigrams: “the”, “students”, “opened”, “their”

bigrams: “the students”, “students opened”, “opened their”

trigrams: “the students opened”, “students opened their”

4-grams: “the students opened their”

The idea is to collect statistics about how frequent different n-grams are and

use these to predict next word.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 6 / 36

n-gram Language Models

Under Markov assumption, we have the following approximation:

P(x (t+1)|x (1), . . . , x (t)) = P(x (t+1)|x (t−n+2), . . . , x (t)) (Markov)

=
P(x (t−n+2), . . . , x (t), x (t+1))

P(x (t−n+2), . . . , x (t))

≈ count(x (t−n+2), . . . , x (t), x (t+1))

count(x (t−n+2), . . . , x (t))

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 7 / 36

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their

For example, suppose that in the corpus:

“students opened their” occurred 1000 times

“students opened their books” occurred 400 times

P(books | students opened their) = 0.4

“students opened their exams” occurred 100 times

P(exams | students opened their) = 0.1

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 8 / 36

Problems with n-gram Language Models

Sparsity Problems

What if “students opened their w” never occurred in data?

What if “students opened their” never occurred in data?

Storage Problems: we need to store counts for all n-grams in the corpus.

P(w |students opened their) =
count(students opened their w)

count(students opened their)

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 9 / 36

Generating text with a n-gram Language Model

We can also use a language model to generate text.

today the price of gold per ton, while production of shoe

lasts and shoe industry, the bank intervened just after it

considered and rejected an imf demand to rebuild depleted

european stocks, sept 30 end primary 76 cts a share.

It is surprisingly grammtical but incoherent. We need to consider more than

three words at a time if we want to model language well. But increasing n

worsens sparisty problem, and increases model size.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 10 / 36

Contents

1 Language Modelings

2 Recurrent Neural Networks (RNN)

3 Long Short-Term Memory (LSTM)

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 11 / 36

How to build a neural Language Model?

output distribution : ŷ = softmax(Uh + b2) ∈ R|V |x
hidden layer : h = f (We + b1)x

concatenated word embeddings : e = [e(1); e(2); e(3); e(4)]x
words/one-hot vectors : x (1), x (2), x (3), x (4)

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 12 / 36

A fixed-window neural Language Model

Figure 1: A fixed-window neural Language Model.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 13 / 36

A fixed-window neural Language Model

Improvements over n-grams LM:

No sparsity problem.

Don’t need to store all observed n-grams.

Remaining problems:

Fixed window is too small.

Enlarging window enlarges W and window can never be large enough.

x (1) and x (2) are multiplied by completely different weights in W .

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 14 / 36

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are capable of conditioning the model

on all previous words in the corpus.

A key idea of RNN is to apply the same weights repeatedly.

Figure 2: Recurrent Neural Network (RNN) is a family of neural architectures which

apply the same weights repeatedly.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 15 / 36

Recurrent Neural Networks (RNN)

Figure 3: A recursive representation of recurrent neural networks.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 16 / 36

A Simple RNN Language Model

words/one-hot vectors: x (t) ∈ R|V |

word embeddings: e(t) = Ex (t)

hidden state: h(t) = σ
(
Whh

(t−1) + Wee
(t) + b1

)
initial hidden state: h(0)

output distribution: ŷ (t) = softmax(Uh(t) + b2) ∈ R|V |

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 17 / 36

A Simple RNN Language Model

Figure 4: A RNN Lanaguage Model.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 18 / 36

RNN Language Models

RNN is good because ...

RNN can process any length input.

Computation for step t can use information from many steps back. (in

theory)

Model size doesn’t increase for longer input context.

Same weights applied on every timestep, so there is symmetry in how inputs

are processed.

However ...

Recurrent computation is slow.

It is difficult to access information from many steps back in practice.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 19 / 36

Training a RNN Language Model

1 Get a big corpus of text which is a sequence of words x (1), . . . , x (T).

2 Feed into RNN-LM to compute output distribution ŷ (t) for every step t.

i.e., predict probability distribution of every word, given words so far.

3 Loss function on step t is

J(t)(θ) = H(y (t), ŷ (t)) = −
∑
w∈V

y (t)
w log ŷ (t)

w = − log ŷ (t)
xt+1

which is the cross entropy between ŷ (t) and y (t).

4 Average this to get overall loss for entire training set:

J(θ) =
1

T

T∑
t=1

J(t)(θ) = − 1

T

T∑
t=1

log ŷ (t)
xt+1

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 20 / 36

Training a RNN Language Model

Figure 5: The loss function of RNN language model with teacher forcing.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 21 / 36

Backpropagation for RNNs

We need to compute the gradient with respect to We ,Wh,U, b1 and b2. Note that

h(t) = σ
(
Whh

(t−1) + Wee
(t) + b1

)
softmax−→ ŷ (t) −→ J(θ) =

1

T

∑
J(t)(θ)

Then we have

∂J(t)

∂U
=
∂J(t)

∂ŷ (t)

∂ŷ (t)

∂U

∂J(t)

∂Wh
=
∂J(t)

∂ŷ (t)

∂ŷ (t)

∂h(t)
∂h(t)

∂Wh
=

t∑
k=1

∂J(t)

∂ŷ (t)

∂ŷ (t)

∂h(t)
∂h(t)

∂h(k)
∂h(k)

∂Wh

∂J(t)

∂We
=
∂J(t)

∂ŷ (t)

∂ŷ (t)

∂h(t)
∂h(t)

∂We
=

t∑
k=1

∂J(t)

∂ŷ (t)

∂ŷ (t)

∂h(t)
∂h(t)

∂h(k)
∂h(k)

∂We

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 22 / 36

Exploding Gradient Problem

If the gradient becomes too big, then the update step becomes too big.

θnew = θold − α∇θJ(θ)

This can cause bad updates: we take too large a step and reach a weird and bad

solution. In the worst case, this will result in Inf or NaN.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 23 / 36

Gradient Clipping

A typical solution for exploding gradient problem is Gradient Clipping: if the

norm of the gradient is greater than some threshold, scale it down before applying

update.

Intuition: take a step in the same direction, but a smaller step.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 24 / 36

Vanishing Gradient Problem

Figure 6: When the gradients are small, the gradient signal gets smaller and smaller as it

backpropagates further.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 25 / 36

Vanishing Gradient Problem

When she tried to print her tickets, she found that the printer was out of toner.

She went to the stationery store to buy more toner. It was very overpriced. After

installing the toner into the printer, she finally printed her

To learn from this training example, the RNN-LM needs to model the

dependency between “tickets” on the 7th step and the target word “tickets”

at the end.

But if gradient is small, the model cannot learn this dependency.

So, the model is unable to predict similar long-distance dependencies at test

time.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 26 / 36

Contents

1 Language Modelings

2 Recurrent Neural Networks (RNN)

3 Long Short-Term Memory (LSTM)

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 27 / 36

Long Short-Term Memory (LSTM)

The main problem of RNN is vanishing gradient: it is too difficult for the

RNN to learn to preserve information over many timesteps.

The Long Short-Term Memory (LSTM) architecture makes it easier for the

RNN to preserve information over many timesteps.

The LSTM can read, erase, and write information from the cell.

In 2013-2015, LSTMs started achieving state-of-the-art results.

Now (2022), other approaches (e.g, Transformers) have become dominant for

many tasks.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 28 / 36

Long Short-Term Memory (LSTM)

We have a sequence of inputs x (t) and we will compute a sequence of hidden

states h(t) and cell states c(t). On timestep t:

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 29 / 36

Long Short-Term Memory (LSTM)

Figure 7: The repeating module in an LSTM contains four interacting layers.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 30 / 36

Forget Gate f (t)

The first step in LSTM is to decide what information we are going to throw

away from the cell state.

This decision is made by a sigmoid layer (forget gate): it looks at h(t−1) and

x (t), and outputs a number between 0 and 1 for each number in the cell state

c(t−1).

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 31 / 36

Input Gate i (t)

The next step is to decide what new information we are going to store in the

cell state.

First, a sigmoid layer (input gate) decides which values we will update.

Next, a tanh layer creates a vector of new candidate values c̃(t).

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 32 / 36

Update Cell State c (t)

Multiply the old state by f (t), forgetting the things we decided to forget

earlier.

Add i (t) � c̃(t). This is the new candidate values, scaled by how much we

decided to update each state value.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 33 / 36

Output Gate o(t)

Run a sigmoid layer (output gate) which decides what parts of the cell state

we are going to output.

Put the cell state c(t) through tanh and multiply it by o(t), so that we only

output the parts we decided to do.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 34 / 36

Remarks

The key to LSTMs is the cell state. It runs straight down the entire chain,

with only some minor linear interactions.

The sigmoid layer outputs numbers between 0 and 1, describing how much of

each component should be let through.

LSTM does not guarantee that there is no vanishing/exploding gradient, but

it does provide an easier way to learn long-distance dependencies.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 35 / 36

References

[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with

gradient descent is difficult, 1994.

[2] G. Chen. A gentle tutorial of recurrent neural network with error

backpropagation, 2018.

[3] F. A. Gers, J. A. Schmidhuber, and F. A. Cummins. Learning to forget:

Continual prediction with lstm, oct 2000.

[4] D. Jurafsky and J. H. Martin. Speech and language processing (2nd edition),

2009.

[5] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent

neural networks, 2013.

Myungjun Kim (Seoul National University) Natural Language Processing with Deep Learning January 28, 2022 36 / 36

	Language Modelings
	Recurrent Neural Networks (RNN)
	Long Short-Term Memory (LSTM)
	References

